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Abstract A robust nonsingular fixed time terminal sliding mode control scheme with a time delay

disturbance observer is proposed for atmospheric pollution detection lidar scanning mechanism (APDL-

SM) system. Distinguished from the conventional terminal sliding mode control methods, we design

a novel fixed-time terminal sliding surface, the convergence time of sliding mode phase of which has

a constant upper bound that is designable by adjusting only one parameter. Moreover, in order to

overcome the problem of unknown upper bound of lumped uncertainty including model uncertainty,

friction effect and external disturbances from the port environment, we propose a time delay distur-

bance observer to provide an estimation for the system lumped uncertainties. By using the Lyapunov

synthesis, the explicit analysis of the convergence time upper bound are performed. Finally, simulation

studies are conducted on the APDL-SM system to show the fast convergence rate and strong robustness

of the proposed control scheme.
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1 Introduction

Emissions from ships have been recognized as a significant contributor to the atmospheric

environment in coastal areas [1, 2]. Exhaust pollutants such as SO2, NOx, particulates and car-

bonaceous compounds would adversely impact regional air quality, global climate and human

health [3–5]. With the rapid development of the maritime industry, the impact of exhaust pollu-

tants from ships on air quality could become more serious in the near future [6, 7]. Atmospheric

pollution detection lidar (APDL), which is developed based on the differential absorption laser

radar technology, could provide an accurate and fast directional monitoring for atmospheric

pollution via a long distance. With the assistance of APDL-SM (i.e., the scanning mechanism

of APDL), we can scan the atmospheric area over the ship nozzle and then obtain the thermal

map of the exhaust plume. Therefore, in order to track the long-range and small-area targets

(i.e., nozzles), the control problem of the azimuth and pitch angle of the APDL-SM arises.

The main difficulty lies in trajectory tracking control with high accuracy and fast response

under the issues of high nonlinearity, coupling dynamics, modeling uncertainties, and external

disturbances effect. APDL-SM is a typical machinery with two rotational degrees of freedom,

the control schemes of which have been investigated intensively, such as adaptive control [8],

neural network methods [9, 10], fuzzy logic control [11, 12], and sliding mode control (SMC)

[13–16]. Among the aforementioned control methods, SMC has attracted significant attention

due to its excellent properties such as strong robustness against parameter changes, model

uncertainties, and good rejection of external disturbances [17–20]. However, conventional SMC

can only guarantee the asymptotic convergence of states, which implies that high gains are

required to obtain the fast convergence and might result in the rapid saturation of actuators [21–

24] . To overcome this problem, terminal sliding mode control(TSMC) approach was designed

to achieve the finite-time convergence of system dynamics [25–27].

The terminal sliding surface was a nonlinear function of the tracking error and its derivatives,

on which the finite-time convergence could be accomplished. Additionally, to eliminate the

singularity and accelerate the speed of convergence of TSMC, the nonsingular terminal sliding

mode control (NTSMC) and fast nonsingular terminal sliding mode control (FNTSMC) were

proposed and achieved a successful applications [28–30]. However, these finite time control

methods have a common weakness that the convergence time is affected by the initial state,

which means that the control performance of the system might be weakened greatly if the

initial state is far away from the sliding surface. Therefore, different from the finite time control

methods, the fixed-time control method can guarantee that the convergence time is uniformly

bounded by a constant independent of the initial states [31, 32]. However, there are few results

in the machinery tracking control by fixed-time control methods. Meanwhile, considering the

uncertainty existing in the system, many studies have used the adaptive control method to

approximate the uncertainty [33–36]. However, the adaptive control usually needs a long time

to stabilize, which might cause the divergence and collapse of the system when applied to the

actual APDL-SM system.

As one of the well-known practical nonlinear control strategies for uncertainties, time delay
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control (TDC) employs a time-delayed estimation (TDE) technique to eliminate the unmod-

eled dynamics, intractable nonlinearity, and external disturbances [37, 38]. However, in the

conventional TDC, the velocity and acceleration signals are calculated by backward differen-

tiator technique, which achieves a lower estimation accuracy due to the differentiating of the

measured position signals [39–41]. To deal with this problem, Van et al. [42] and Brahmi et

al. [43] used second-order exact differentiation (SOED) to estimate the velocity and accelera-

tion; however, the SOED can only achieve finite time error convergence, which means that the

estimation time of system states rely on the initial states. When the initial states of estima-

tion error are far from the original point, the estimation time increases and consequently the

tracking performance deteriorates.

Motivated by the aforementioned discussions and inspired by the attractive attributes of

fixed-time control method and TDE, a robust nonsingular fixed time terminal sliding mode

(RNFTTSM) control scheme with time delay disturbance observer (TDDO) is proposed for the

control of APDL-SM. The contributions are threefold:

(1) We develop a novel fixed time terminal sliding surface (FTTSS) that the convergence time

of sliding mode phase has a constant upper bound. The constant upper bound can be

designed by adjusting only one parameter.

(2) We propose a new nonsingular fixed time terminal sliding mode (NFTTSM) controller by

combining the fixed-time approach law and the proposed FTTSS. The settling time function

is upper bounded by a priori value that dose not rely on the system initial state but only on

the design parameters. This property implies that the convergence time can be guaranteed

in a prescribed manner.

(3) We design a novel robust nonsingular fixed time terminal sliding mode (RNFTTSM) control

scheme to improve the robustness of system by introducing a designed TDDO. The TDDO

could estimate the lumped uncertainty of the system rapidly and accurately.

The rest of the paper is structured as follows: Section 2 provides the modeling process of

APDL-SM and the problem formulation. The notations and preliminaries in this paper are

given in Section 3. Section 4 contains the main results, which includes the design of FTTSS

, NFTTSM and RNFTTSM control scheme and the corresponding stability analysis. The

simulation results to verify the proposed methods are presented in Section 5. Finally, Section

6 concludes this paper.

2 System Modelling and Problem Formulation

In this section, we derive the kinematic model and dynamic model of APDL-SM at first,

and then describe the problem studied in this work mathematically.

2.1 APDL-SM Modeling

As a controlled object in control system, APDL-SM can be divided into three parts in the

mechanical structure: Chassis (CAS), azimuth rotating part (ARP) , and pitch rotating part
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(PRP), which are represented by B0, B1, B2 respectively. The structure diagram of APDL-SM

is shown in Figure 1.

CAS   (B0)

PRP 

(B2)

ARP   (B1)

(a)

CAS   (B0)

PRP 

(B2)

ARP   (B1)

(b)

Figure 1 APDL-SM consists of three parts: CAS (chassis of APDL-SM), ARP (az-

imuth rotating part), and PRP (pitch rotating part). They are represented

by B0, B1, B2 , respectively.

According to the Denavit-Hartenberg Convention, we establish a link frame for APDL-SM,

then carry out the kinematic and the dynamic modelling, which are derived as follows.

2.1.1 Kinematics Modeling

Considering the mechanical structure of the APDL-SM, it can be schematically represented

from a mechanical viewpoint as a kinematic chain of two rigid bodies (links) connected by two

revolute joints, as shown in Figure 2.
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Figure 2 Kinematic Chain

End-Effector

y0

x1

θ 1

θ 2

z1

x2

z2

θ 1

θ 2

Revolute Jiont 1

l 2

l 3

Revolute Jiont 2

Link 1

Link 2

z0

x0

l 1

y1

y2

Base

O1

O0

O2

O2'

Frame 2

Frame 1

Frame 0

Figure 3 Link Frame

The center of CAS and the central point of the outlet are considered to be the base and

end-effector of the kinematic chain, respectively. The joint connecting B0, and B1 is considered

as Revolute Jiont 1. The joint connecting B1 and B2 is considered as Revolute Jiont 2 which

locates at the intersection of the two rotation axes of B1 and B2 in the actual mechanism.

According to the Denavit-Hartenberg Convention, the link frame for APDL-SM is estab-

lished as shown in Figure 3. The origin of Frame 0 coincides with Revolute Jiont 1. Analo-

gously, the origin of Frame 1 locates at the intersection between z0 and z1. Frame 2 denotes

the end-effector frame. O2′ denotes the intersection between y2 and z1.
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On this basis, the Denavit-Hartenberg parameters are specified in Table 1.

Table 1 DH parameters for APDL-SM

Link ai αi di θi

1 0 π
2

l1 θ1

2 l3 0 l2 θ2

The homogeneous transformation matrices are computed by

A1
0 = A1

0(θ1) =


c1 0 s1 0

s1 0 −c1 0

0 1 0 l1

0 0 0 1

 , A2
1 = A2

1(θ2) =


c2 −s2 0 l3c2

s2 c2 0 l3s2

0 0 1 l2

0 0 0 1

 (2.1)

where ci denotes cos θi, si denotes sin θi, and l1, l2, l3 denote the distances between O0 and O1,

O1 and O2′ , O2′ and O2, respectively.

Then the direct kinematics describing the position and orientation of Frame 2 with respect

to Frame 0 is given by

T 2
0 = A1

0 ·A2
1 =


c1c2 −c1s2 s1 l3c1c2 + l2s1

s1c2 −s1s2 −c1 l3s1c2 − l2c1
s2 c2 0 l3s2 + l1

0 0 0 1

 (2.2)

2.1.2 Dynamic Modeling

For dynamic modeling of APDL-SM with n degrees of freedom (n = 2), two methods exist:

the Euler-Lagrange and the Newton-Euler method. The former approach is energy-based, while

the latter analyzes the forces between each of the links in a recursive manner. Considering the

non-uniform and asymmetric properties of the mechanical structure of APDL-SM, the potential

energy changes over the elevation angle during the scanning movement, so the Newton-Euler

method is employed.

For the augmentedLink i (i.e., Link i plus Joint i) of the kinematic chain (as shown in

Figure 2) and its center of mass Ci, the modeling procedure consists of two recursions: a

forward recursion and a backward recursion [44]. Some symbols used in the procedure are

given in Table 2.

Table 2 Symbols in Dynamic Modeling for Link i
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Symbol Description

mi mass of augmentedLink i

I ii inertia tensor of augmentedLink i with reference to Frame i

r ii−1,i vector from origin of Frame (i−1) to origin of Frame i with reference

to Frame i

r ii,Ci
vector from origin of Frame i to centre of mass Ci with reference to

Frame i

ω i
i angular velocity of augmentedLink i with reference to Frame i

ω̇ i
i angular acceleration of augmentedLink i with reference to Frame i

v i
i linear velocity of origin of Frame i with reference to Frame i

v̇ i
i linear acceleration of origin of Frame i with reference to Frame i

v i
Ci

linear velocity of centre of mass Ci with reference to Frame i

v̇ i
Ci

linear acceleration of centre of mass Ci with reference to Frame i

f ii force exerted by Link (i− 1) on Link i with reference to Frame i

ρ ii moment exerted by Link (i− 1) on Link i with reference to Frame i

τi the moment resulting at the RevoluteJoint i

For the forward recursion, link and rotor velocities and accelerations can be computed

recursively starting from the velocity and acceleration of the base link by using (2.3), (2.4),

(2.5), and (2.6), with known initial conditions ω 0
0 = ω̇ 0

0 = [0 0 0]T ,

ω i
i = R i

i−1
T

(ω i−1
i−1 + θ̇iz0) (2.3)

ω̇ i
i = R i

i−1
T

(ω̇ i−1
i−1 + θ̈iz0 + θ̈iω

i−1
i−1 × z0) (2.4)

v̇ i
i = R i

i−1
T
v̇ i−1
i−1 + ω̇ii × r ii−1,i + ωii × (ωii × r ii−1,i) (2.5)

v̇ iCi
= v̇ i

i + ω̇ii × r ii,Ci
+ ωii × (ωii × r ii,Ci

) (2.6)

where z0 is the unit vector of the rotational axis of revolute joint, i.e., z0 = [0 0 1]T , Ri
i−1 is

the rotation matrix from Frame (i− 1) into Frame i, which can be calculated based Denavit-

Hartenberg parameters :

R1
0 =


c1 0 s1

s1 0 −c1
0 1 0

 , R2
1 =


c2 −s2 0

s2 c2 0

0 0 1


Having computed the velocities and accelerations with the forward recursion from the base

link to the end-effector, the Newton-Euler equations can be utilized to find the forces and

moments acting on each link in a a backward recursion as (2.7) (2.8) (2.9), starting from the
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force and moment applied to the end-effector, i.e., f n+1
n+1 = ρ n+1

n+1 = [0 0 0]T for n = 2.

f ii = Ri+1
i f i+1

i+1 +mi v̇
i
Ci

(2.7)

ρii = −f ii × (r ii−1,i + r ii,Ci
) + Ri+1

i ρi+1
i+1 + R i+1

i f i+1
i+1 × r ii,Ci

+ I ii ω̇
i
i + ωii × (I ii ω

i
i) (2.8)

τi = ρii
T
Ri
i−1

T
z0 (2.9)

After above calculations, the dynamic model of APDL-SM is established as follows:

M(θ) θ̈ + C(θ, θ̇) θ̇ +G(θ) = τ + τd (2.10)

in which vectors θ, θ̇, θ̈ ∈ R2, θ = [θ1, θ2]T denotes the joint positions, velocities, and ac-

celerations of APDL-SM, respectively. M(θ) ∈ R2×2 is a positive definite inertia matrix,

C(θ, θ̇) ∈ R2×2 is the centripetal Coriolis matrix, G(θ) ∈ R2 is the gravitational vector,

τ = [τ1, τ2]T ∈ R2 is the joint torque input vector generated by the electrical motors con-

nected to the CAS and ARP of APDL-SM and τd is the external disturbance torque vector.

The parameters of APDL-SM are given as follows: m1 = 100 kg, m2 = 46.5 kg, r1
0,1 =

[0 , 0.18 , 0]T , r2
1,2 = [0 , 0.18 , 0.4]T , r 1

1,C1
= [0 , 0.16 , 0]T , r 2

2,C2
= [0 , −0.14 , 0]T . The

inertia tensors of augmentedLink 1 and augmentedLink 2 are

I 1
1 =


5 0 0

0 5 −1.2

0 −1.2 3.2

 , I 2
2 =


2 0 0

0 1.3 0.2

0 0.2 2


Therefore, three nominal matrices in (2.10) are presented as

M0(θ) =

9.51 sin2 θ2 + 8.74 cos2 θ2 + 5 −0.544 cos θ2

−0.544 cos θ2 2.07

 (2.11)

C0(θ, θ̇) =

 1.55 sin θ2 cos θ2 · θ̇2 0.54 sin θ2 · θ̇2
−0.77 sin θ2cosθ2 · θ̇1 0

 (2.12)

G0(θ) =

 0

−18.23 sin θ2

 (2.13)

2.2 Problem Formulation

Considering the modeling uncertainties caused by the asymmetric structural characteristics

of APDL-SM, the dynamic equation (2.10) of APDL-SM in the joint space can be expressed as

M0(θ) θ̈ + C0(θ, θ̇) θ̇ +G0(θ) = τ + Fd(θ, θ̇, θ̈) (2.14)

where M0(θ), C0(θ, θ̇), G0(θ) denote the nominal values, and Fd(θ, θ̇, θ̈) = τd − ∆M(θ)θ̈ −
∆C(θ, θ̇)θ̇ −∆G(θ) is the lumped disturbance. ∆M(θ),∆C(θ, θ̇),∆G(θ) stand for the system

perturbations, and τd ∈ R2 is external disturbances vectors.

The following assumptions are considered for APDL-SM.
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Proposition 1 (see [45]) The inertia matrix M0(θ) is positive-definite symmetrical and

bounded such that:

λmin(M0) I2×2 ≤M0(θ) ≤ λmax(M0) I2×2

where λmin(M0) and λmax(M0) are the minimum and maximum eigenvalues of the known

inertia matrix M0(θ) respectively,and I2×2 is a 2×2 identity matrix.

Proposition 2 The matrix Ṁ0(θ)− 2C0(θ, θ̇) is skew symmetric.

Let θd(t) ∈ R2 be the desired positon azimuth and pitch of the APDL-SM, then the tracking

error can be denoted as e(t) = [e1(t), e2(t)]T ∈ R2×2, e1(t) = θ(t) − θd(t) and e2(t) = θ̇(t) −
θ̇d(t). The control objective of this paper is to design an nonsingular SMC for APDL-SM, such

that the tracking error e(t) can converge to zero within a fixed amount of time, even if APDL-

SM is under the effect of unmodeled dynamics, friction vibration and external disturbances:

lim
t→tc
‖e(t)‖ = 0 (2.15)

where tc = tr + ts is the total settling time of reaching phase and sliding mode phase, and it is

available and independent of the initial state.

To solve these problem, let x1(t) = θ(t) ∈ R2, x2(t) = θ̇(t) ∈ R2, x(t) = [x1(t), x2(t)]T ∈
R2×2, then APDL-SM dynamic equation (2.14) can be rewritten in the state space form as

ẋ1(t) = x2(t)

ẋ2(t) = f(t, x) + g(t, x)u+ d(t, x) (2.16)

where f(t, x) = M0
−1(x1)

[
− C0(x1, x2)x2 − G0(x1)

]
, g(t, x) = M0

−1(x1), and d(t, x) =

M0
−1(x1) · Fd(x1, x2, ẋ2). u = τ is the control input. The following assumptions are imposed

on system.

Assumption 1 The desired trajectory θd(t) and its first and second-order derivative are

known and bounded.

Assumption 2 The lumped uncertainty term d(t, x) is bounded by a known function:

‖ d(t, x) ‖ ≤ Ξ(x) , ∀(t) ≥ 0 ∀(x) ∈ R2×2 (2.17)

Assumption 3 The angular position θ(t), angular velocity θ̇(t) and angular acceleration

θ̈(t) are available.

3 Notations and Preliminaries

3.1 Notations

R denotes the set of real numbers. R+ denotes the set of positive real numbers. Rn represents

the set of n column vectors. Rn×n represents the set of n× n matrices.

As for a vector a = [a1, a2, ..., an]T ∈ Rn , define the absolute value of a as |a| =
[
|a1|, |a2|, ..., |an|

]T ∈
Rn, where | · | denotes the absolute value of a scalar. The norm of vector a is defined as the

Euclidean norm, i.e., ‖a‖ =
√
aTa. For the signum function sgn(·) and a constant γ, define:
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aγ =
[
a1
γ , a2

γ , ..., an
γ
]T ∈ Rn

sgn(a) =
[
sgn(a1), sgn(a2), ..., sgn(an)

]T ∈ Rn,

baeγ :=
[
|a1|γsgn(a1), .., |an|γsgn(an)

]T ∈ Rn,

dacγ := diag
(
|a1|γsgn(a1), .., |an|γsgn(an)

)
∈ Rn×n,

(a+ 1)γ :=
[
(a1 + 1)γ , (a2 + 1)γ , ..., (an + 1)γ

]T ∈ Rn,

〈a+ 1〉γ := diag
(

(|a1|+ 1)γ , ..., (|an|+ 1)γ
)
∈ Rn×n.

As for a matrix X ∈ Rm×n, ‖X‖ represents the Euclidean norm, X] denotes the column

vector of the sum of the absolute values of the elements in each row, i.e.,

X] :=
[∑n

j=1 |x1j |,
∑n
j=1 |x2j |, ...,

∑n
j=1 |xmj |

]T
∈ Rn.

3.2 Preliminaries

Consider the following differential equation system:

ẋ(t) = F (x(t)), x(0) = x0 (3.1)

where x ∈ RN , F (x) : R+ × RN → RN is a nonlinear function. Suppose that the origin is an

equilibrium point of (3.1).

Definition 1 ([46]) The origin of system (3.1) is a finite-time stable equilibrium if the

origin is Lyapunov stable and there exists a function T : RN → R+, called the settling time

function, such that for every x0 ∈ RN , the solution x(t, x0) of system (3.1) is defined on

[0, T (x0)), with x(t, x0) ∈ RN for all t ∈ [0, T (x0)), and limt→Tx0
x(t, x0) = 0.

Definition 2 ([46]) The origin of (3.1) is said to be a fixed-time stable equilibrium point

if it is globally finite-time stable with bounded settling time T (x0), i.e., ∃ Tmax > 0 such that

T (x0) < Tmax, ∀x0 ∈ RN .

Lemma 1 ([47]) Consider a scalar system

ẏ = −α ym
n − β y

p
q , y(0) = y0 (3.2)

where α > 0, β > 0, and m,n, p, q are positive odd integers satisfying m > n and p > q. Then

the equilibrium of (3.2) is fixed-time stable and the settling time T is bounded by

T < Tmax ,
1

α

n

m− n
+

1

β

q

q − p
(3.3)

4 Control Scheme Design and Stability Analysis

It consists of two parts: NFTTSM controller and the RNFTTSM control scheme, which

combines NFTTSM with a time delay distuebance observer (TDDO). They will be introduced

in detail respectively as follows.
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4.1 FTTSS

First of all, a new fixed time terminal sliding surface (FTTSS) is designed as:

σ(e) = e2 + 2β de1c
1
2 (|e1|+ 1)

3
2 (4.1)

where β = diag(β1, β2) is a positive definite matrix.

Theorem 1 Consider the tracking error dynamic system (2.14) with our proposed FTTSS

(4.1) satisfying σ = 0. Then e1 = 0 and e2 = 0 can be reached in a fixed time ts, whose upper

bound can be estimated as

ts ≤ Ts = (β−1)
]

(4.2)

Proof Once a sliding motion is established on the surface σ = 0, the dynamics of the

variable e1(t) are governed by:

ė1 = −2β de1c
1
2 (|e1|+ 1)

3
2 (4.3)

it can be written as

−β dt =
1

2
de1c−

1
2 (|e1|+ 1)

1
2 de1 (4.4)

By solving the differential equation (4.4), the convergence time of the system states on the

proposed FTTSS σ = 0 can be calculated as

ts = β−1de1c
1
2 (|e1|+ 1)−

1
2 (4.5)

Consider that the upper bound of both elements in the vector de1c
1
2 (|e1|+ 1)−

1
2 is 1, there-

fore, once the sliding surface is attained, the states e1, e2 can reach the origin within a fixed

time with the upper bound Ts:

ts ≤ Ts = (β−1)
]

(4.6)

where (·)] denotes the column vector of a matrix, which calculates the sum of the absolute

values of the elements in each row.

4.2 NFTTSM Controller

Considering the Assumption 3 that the angular position θ(t) and angular velocity θ̇(t) are

both available, we design a controller for system (2.14) such that the desired trajectory can be

reached in fixed time, which means that the total convergence time is independent of initial

states.

According to the terminal sliding mode design procedure, the nonsingular fixed time terminal

sliding mode controller is designed as

u = ueq + ure (4.7)

where ueq is used to control nominal component, and ure is introduced to deal with the uncer-

tainty. ueq can be obtained by solving the equation σ̇ = 0 with d(t, x) = 0

ueq = −g−1(t, x)

[
f(t, x) + 4βde1c

1
2 〈e1 + 1〉

1
2 e2+

+ sat
(
βde1c−

1
2 〈e1 + 1〉

1
2 e2, h

)]
(4.8)
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In (4.8), a saturation function is applied to handle the singularity by limiting the amplitude

of singularity term de1c−
1
2 , and the saturation function can be defined as

sat(x, y) =

 x, if |x| < y

y ·sgn(x), if |x| ≥ y
(4.9)

To guarantee the fixed-time convergence to the sliding surface, revisit Lemma 1 and then

design the reaching law:

σ̇ = −k1 σ
p
q − k2 σ

m
n − Ξ(x)sgn(σ) (4.10)

where k1 = diag(k11, k12), k2 = diag(k21, k22) are positive definite matrix, m,n, p, q are positive

odd integers satisfying m > n and p < q. Therefore, we can obtain ure as

ure = −g−1(t, x)
[
k1 σ

p
q + k2 σ

m
n + Ξ(x)sgn(σ)

]
(4.11)

Theorem 2 Considering the dynamic system (2.16) satisfying Assumption 1, 2 , 3, the

sliding mode σ and the tracking errors e1 and e2 will converge to the origin within fixed time

via the proposed FTTSS (4.1) and NFTTSM controller (4.7) (4.8) (4.11), and the settling time

tc is bounded by

tc ≤ Tc = (β−1 +
n

m− n
k1
−1 +

q

q − p
k2
−1)

]
(4.12)

Proof Consider the following Lyapunov candidate function as

V1 =
1

2
σTσ (4.13)

The time derivative of V1 can be obtained as V̇1 = σT σ̇, and yields

V̇1 = σT
[
f(t, x) + g(t, x)u+ d(t, x) + 4βde1c

1
2 〈e1 + 1〉

1
2 e2 + βde1c−

1
2 〈e1 + 1〉

1
2 e2

]
(4.14)

Substituting the NFTTSM controller (4.7) (4.8) (4.11) into (4.14), we have

V̇1 = −σT
[
k1σ

p
q + k2σ

m
n + Ξ(x)sgn(σ)− d(t, x) + sat(Γ, h)− Γ

]
= −σT

[
k1σ

p
q + k2σ

m
n

]
− σT

[
Ξ(x)sgn(σ)− d(t, x)

]
− σT

[
sat(Γ, h)− Γ

]
≤ −λmin(k1)V

p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖

[
Ξ(x)− ‖d(t, e)‖

]
− ‖σ‖

[
‖sat(Γ, h)‖ − ‖Γ‖

]
= −λmin(k1)V

p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖ · µ− ‖σ‖ · ν (4.15)

where Γ = βde1c−
1
2 〈e1 + 1〉

1
2 e2, µ = Ξ(x)− ‖d(t, x)‖, ν = ‖sat(Γ, h)‖ − ‖Γ‖, λmin(ki) denotes

the minimum eigenvalue of the positively definite matrix ki, therefore, we have

−λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n < 0 (4.16)

According to (2.17), one has µ = Ξ(x)− ‖d(t, x)‖ > 0 so that it yields

−‖σ‖· µ < 0 (4.17)
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To confirm the sign of −‖σ‖· ν, define the singularity area Ω as the region where inequality

|Γ| ≥ h holds. The following analysis will be divided into two cases.

For the case of |Γ| < h, on the basis of (4.9), we have sat(Γ, h) = Γ, which gives rise to

ν = ‖sat(Γ, h)‖ − ‖Γ‖ = 0, thus −‖σ‖· ν < 0. Based on the (4.16) and (4.17), it is concluded

that V̇1 < 0, so that it is asymptotically stable.

For the case of |Γ| ≥ h, the tracking error e1(t) can be obtained by e1(t) = e1(0)+
∫ t
0
e2(τ)dτ .

If e2(t) > 0 holds, e1(t) will increase monotonically and leave the singularity area Ω. If e2(t < 0)

holds, e1(t) will decrease monotonically and also leave the singularity area. Both situations

prove that the system lies in the singularity region transiently. Therefore, the existence of

singularity region does not influence the results of the stability analysis.

According to Lemma 1 and the reaching law in (4.10), system (2.16) reaches the sliding

surface within a bounded time, and the bound of convergence time can be estimated by

tr ≤ Tr =

(
n

m− n
k1
−1 +

q

q − p
k2
−1
)]

(4.18)

When the system reaches the sliding surface σ = 0, recalling Theorem 1 yields that the state

variable e1(t) can be stabilized within a finite time bounded by

ts ≤ Ts = (β−1)
]

(4.19)

When state variable e1(t) settles down to the origin, the state variable e2(t) also converges

to zero. Consequently, the convergence time for system (2.16) can be estimated as

tc = tr + ts

≤ Tr + Ts = (β−1 +
n

m− n
k1
−1 +

q

q − p
k2
−1)

]
(4.20)

The proof is completed.

Remark 1 In order to guarantee that σ = 0 lies outside the singularity area Ω, as pointed

out in [46], the parameter h in control law (4.8) can be set to satisfy

h > βde1maxc−
1
2 〈e1max + 1〉

1
2 ·
(

2β de1maxc
1
2 (|e1max|+ 1)

3
2

)
(4.21)

=⇒ h > 2β2 ·
(
|e1max|+ 1

)2
(4.22)

where e1max denotes the maximum of |e1|.
Remark 2 In the proposed controller (4.7) (4.8) (4.11), the design procedure is based

on the assumption that the upper bound function Ξ(x) of the unknown function d(t, x) can be

obtained in advance. However, this approach limits its applications because the exact upper

bound function is difficult to obtain beforehand in real application. In order to resolve this

limitation, a TDDO will be developed in the next section, and the RNFTTSM control scheme

is proposed as a result.
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4.3 RNFTTSM

In this section, we propose a robust nonsingular fixed time terminal sliding mode (RN-

FTTSM) contol scheme based on a time delay disturbance observer (TDDO). Another assump-

tion is made as follows.

Assumption 4 The lumped uncertainty term d(t, x) is continuous over time t, and con-

tinuously differentiable with respect to the time variable, and do not vary largely during a small

period TL of time.

According to the assumption above, the lumped uncertainty term d(t, x) can be considered

as a continuous function, and thus the following approximation is satisfied based on TDE

technique:

d(t, x) ∼= d(t− TL, x) (4.23)

Consequently, the estimation of the d(t, e) can be obtained, that is,

d̂(t, x) , d(t− TL, x) (4.24)

where d̂(t, x) is the estimation of lumped uncertainty d(t, x) at the time t.

Remark 3 In practice, the smallest achievable TL is the sampling period in digital im-

plementation. A digital control system behaves reasonably close to the continuous system if

the sampling rate is faster than 30 times the system bandwidth [48]. Hence, with a TL smaller

than this level, the continuous lumped uncertainty d(t, e) can be estimated by using the TDE.

From the dynamic system (2.16) and (4.24), the TDDO can be obtained as

d̂(t, x) , d(t− TL, x)

= ẋ2(t− TL)− f(t− TL, x)−
(
g(t− TL, x)u

)
= dTDDO (4.25)

where f(t−TL, x) =
{
M0
−1(x1)

[
−C0(x1, x2)x2−G0(x1)

]}∣∣∣
t−TL

and g(t−TL, x) =
{
M0
−1(x1)

}∣∣∣
t−TL

.

From (4.23), (4.25), the unknown lumped uncertainty function can be described by the

proposed TDDO with the observation error δ as

d(t, x) = dTDDO + δ (4.26)

where δ is the observation error. Based on the analyses in [[49],[50]], the assumption below is

reasonable for a sufficiently small TL.

Assumption 5 There exist a positive constant δ such that |δ| ≤ δ, and δ is a known

upper bound of TDDO error.

From (4.26), the dynamic system described in (2.16) can be rewritten as

ẋ1(t) = x2(t)

ẋ2(t) = f(t, x) + g(t, x)u+ dTDDO + δ (4.27)
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For this system, the derivative of the sliding surface σ defined in (4.1) can be rewritten as

σ̇ =f(t, x) + g(t, x)u+ dH−TDDO + δ

+ 4βde1c
1
2 〈e1 + 1〉

1
2 e2 + βde1c−

1
2 〈e1 + 1〉

1
2 e2 (4.28)

Then the RNFTTSM control scheme is now designed based on TDDO to accommodate

unmodeled dynamics, friction vibration and external disturbances.

u = ueq + uTDDO + ure (4.29)

where ueq is designed as the same as (4.8):

ueq = −g−1(t, x)

[
f(t, x) + 4βde1c

1
2 〈e1 + 1〉

1
2 e2+

+ sat
(
βde1c−

1
2 〈e1 + 1〉

1
2 e2, h

)]
(4.30)

The lumped uncertainty compensation term based on TDDO is

uTDDO = −g−1(t, x) dTDDO (4.31)

and ure is designed as

ure = −g−1(t, x)
[
k1 σ

p
q + k2 σ

m
n + δ ·sgn(σ)

]
(4.32)

The parameters in (4.32) have the same definitions in (4.11). And the stability of the system

under the proposed RNFTTSM control scheme in (4.31) is demonstrated as follows.

Theorem 3 Considering the APDL-SM dynamic system (4.27) under Assumption 1 to

Assumption 5, the sliding mode σ and the tracking errors e1 and e2 will converge to the origin

within fixed time via the proposed FTTSS (4.1) and RNFTTSM control law (4.29) (4.30) (4.31)

(4.32)

Proof Let the Lyapunov candidate function be

V2 =
1

2
σTσ (4.33)

Differentiating V2 with respect to time and substitute (4.28) into it, we have

V̇2 = σT σ̇

= σT
[
f(t, x) + g(t, x)u+ (dTDDO + δ) (4.34)

+ 4βde1c
1
2 〈e1 + 1〉

1
2 e2 + βde1c−

1
2 〈e1 + 1〉

1
2 e2

]
then, substitute the RNFTTSM control law (4.29) to (4.32) into above, it yields

V̇2 = −σT
[
sat(Γ, h)− Γ + k1σ

p
q + k2σ

m
n + δ ·sgn(σ)− δ

]
= −σT

[
k1σ

p
q + k2σ

m
n

]
− σT

[
δ ·sgn(σ)− δ

]
− σT

[
sat(Γ, h)− Γ

]
≤ −λmin(k1)V

p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖

[
‖sat(Γ, h)‖ − ‖Γ‖

]
= −λmin(k1)V

p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖ · ν (4.35)
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where Γ and ν have the same definations as (4.15).

Based on (4.35) and the proof for Theorem 1, we can verify that the trajectories of (4.1) and

the tracking errors e1 and e2 will converge to the origin within fixed time without singularity

under the control law defined in (4.29) to (4.32). This completes the proof for Theorem 3.

Remark 4 Considering that the proposed control laws (4.11) and (4.32) consist the

signum function sgn(·), the chattering is inevasible in the system. However, the chattering

amplitude is related to the upper bound of lumped uncertainty or the upper bound of TDDO

error. Therefore, the chattering can be reduced to the acceptable limits due to TDDO and the

proposed methods can used in APDL-SM system.

5 Comparative Study and Discussion

To demonstrate the effectiveness of the proposed control schemes, numerical simulations for

the azimuth and pitch angle of the APDL-SM to track a given desired trajectory are carried

out under the proposed control scheme. Rewrite the dynamic equation of APDL-SM (2.14) as

follows:

M0(θ) θ̈ + C0(θ, θ̇) θ̇ +G0(θ) = τ + Fd(θ, θ̇, θ̈) (5.1)

where the three nominal matrices are presented as

M0(θ) =

9.51 sin2 θ2 + 8.74 cos2 θ2 + 5 −0.544 cos θ2

−0.544 cos θ2 2.07

 (5.2)

C0(θ, θ̇) =

 1.55 sin θ2 cos θ2 · θ̇2 0.54 sin θ2 · θ̇2
−0.77 sin θ2cosθ2 · θ̇1 0

 (5.3)

G0(θ) =

 0

−18.23 sin θ2

 (5.4)

The desierd trajectory for azimuth and pitch angle of APDL-SM are selected as

θd =

1.45− 1.4e−t + 0.6e−4t

1.25 + e−t − 0.5e−4t

 (5.5)

5.1 Convergence Time of Sliding Mode Phase on FTTSS

Assign the parameter β in FTTSS with diag(2, 4). The initial states of positon tracking

error on sliding surface are set e1(0) = [3,−1]T . The results are shown in Figure 4(a). We can

observe that the convergence time for position tracking error of azimuth angle e11 and pitch

angle e12 is less than 0.5s and 0.25s, respectively; therefore, it verified that the convergence

time of sliding mode phase has the upper bound β−1 presented in Theorem 1.
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Figure 4 Convergence time of sliding mode phase

Setting β = diag(5, 8) and then yielding Figure 4(b), the Theorem 1 could be also verified.

Therefore, it is clear that the convergence time of the position tracking error on sliding mode

phase can be modified optionally by changing the parameter β of our proposed FTTSS.

5.2 Control Performance of the Proposed NFTTSM Controller

The unmodeled dynamics including parametric uncertainties is chosen as 0.2 times the

normal dynamics, while the external disturbances follows

τd =

 2 sint+ 0.5 sin (200πt)

cos(2t) + 0.5 sin (200πt)

 (5.6)

Five groups of initial states x(0)1 = [0.2, 2.1, 0,−0.1]T , x(0)2 = [0.8, 3, 0.5, 0.5]T , x(0)3 =

[1.2, 0.2,−0.4, 1.4]T , x(0)4 = [1.5, 1.3, 0.1, 6]T , x(0)5 = [−0.4, 2.3,−0.2,−3]T are considered,

respectively. The parameters of our NFTTSM controller are selected as k1 = 0.5, k2 = 1,m =

5, n = 3, p = 1, q = 9, β1 = β2 = 8. Under the same settings of controller parameters and

external disturbance, the simulation results of ARP and PRP in ADPL-SM with five groups of

initial states are shown in Figure 5 and Figure 6.
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(a) Angle tracking trajectory (b) Angle tracking error

Figure 5 Angle tracking trajectory and tracking error trajectory of ARP and PRP

in APDL-SM with five cases of initial states.

Based on the results in Theorem 1 and Theorem 2, the upper bound of the convergence

time during reaching phase and sliding mode phase can be calculated by NFTTSM controller

parameters as tr ≤ Tr = 3.75s and ts ≤ Ts = 0.125s. As a consequence, the total setting time

tc can be estimated as tc ≤ Tc = Tr + Ts = 3.875s. Compared with the following practical

numerical results, the estimated convergence time is conservative.

Figure 5(a) and Figure 5(b) show the response curves of angle and angular tracking error

trajectory with different initial states. It is observed that the proposed NFTTSM controller

has fast global convergence speed and the tracking errors decrease to zero promptly. The

convergence time under the proposed NFTTSM controller is smaller than 1.5s, which is much

less than the calculated value before. The settling time is independent to the starting points of

the states.

(a) Angular velocity tracking trajectory (b) Angular velocity tracking error trajectory

Figure 6 Angular velocity tracking trajectory and angular velocity tracking error

trajectory of ARP and PRP in APDL-SM with five cases of initial states.
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The angular velocity and its tracking error trajectory are exhibited in Figure 6(a) and Figure

6(b). The results prove the same property of fixed-time convergence for velocity tracking error.

However, it is obvious that all the response curves have a little hump corresponding to PRP

and the tracking errors converges to zero with a extremely small deviation (within ±5× 10−4).

The reason is that NFTTSM controller is designed based on the assumption that the exact

bound of lumped uncertaity Ξ(x) is unknown in advance. To guarantee the stability and

convergence of the tracking error, Ξ(x) is chosen to be larger than the upper bound of the

assumed fault magnitude. However, this approach limits its applications because a larger Ξ(x)

means a larger amplitude of switching in (4.11). Therefore, the difficulty of obtaining a precise

distuebance upper bound function Ξ(x) in advance in real application causes the NFTTSM

controller has some deficiency in roustness.

5.3 Performance of RNFTTSM Control Scheme

On the basis of NFTTSM controller, we construct RNFTTSM control scheme to enhance the

robustness by importing TDDO to estimate the unknown lumped uncertainties. The estimated

uncertainties are then used to reconfigure the control system rapidly.

In this section, to better demonstrate the superiority of the RNFFTSM controller, NFTTSM

and the adaptive SOFNTSM controller [[51]] are considered in simulations for the purpose of

comparison.

The comparative simulations are conducted with the same initial conditions x(0)1 = [0.2, 2.1, 0,−0.1]T

in the presence of the same model uncertainties and external disturbances which share the same

settings in Section 5.2.

As for controller parameters of RNFTTSM, they also share the same parameter settings as

NFTTSM controller, which are k1 = 0.5, k2 = 1,m = 5, n = 3, p = 1, q = 9, β1 = β2 = 8.
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(a) Angle tracking trajectory
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Figure 7 Angle tracking trajectory and tracking error trajectory of ARP and PRP

in APDL-SM under three controllers.

The angle and angular velocity tracking performances of ARP and PRP under three con-
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troller are depicted in Figure 7 and Figure 8. All the response curves of the proposed RNFTTSM

and NFTTSM controller are similar in the early stages, because the same basic control struc-

ture with identical parameters. It means that RNFTTSM also has the fixed time convergence

performance.

0 1 2 3 4 5 6 7
time(s)

-1

0

1

2

dq
1 (

ra
d/

s)

Desired angular velocity
SOFTNSM
Proposed NFTTSMC
Proposed RNFTTSMC

0 1 2 3 4 5 6 7
time(s)

-1

0

1

2

dq
2 (

ra
d/

s)

Desired angular velocity
SOFTNSM
Proposed NFTTSMC
Proposed RNFTTSMC

Angular velocity tracking error trajectory

0 1 2 3 4 5 6 7

time(s)

-0.5

0

0.5

1

1.5

de
1(r

ad
/s

) SOFNTSM
Proposed NFTTSMC
Proposed RNFTTSMC

0 1 2 3 4 5 6 7

time(s)

-2

-1

0

1

de
2 (

ra
d/

s)

SOFNTSM
Proposed NFTTSMC
Proposed RNFTTSMC

Angular velocity tracking trajectory

Figure 8 Angular velocity tracking trajectory and angular velocity tracking error

trajectory of ARP and PRP in APDL-SM under three controllers.

However, after the system reaching a plateau, both RNFTTSM and SOFTNSM controller

track the desired trajectories accurately and keep the tracking errors staying zero. The response

curves of NFTTSM controller have a fluctuation at the tracking stage of PRP. These results

show that RNFTTSM and SONFTSM have strong robustness. But Figure 7(b) and Figure

8(b) verify that RNFTTSM controller has a faster convergence rate.

Consequently, the simulation results reveal that the designed RNFTTSM control scheme

can provide designable settling time (fixed-time convergence), faster global convergence rate,

high-precision tracking and strong robustness.

6 Conclusion

To ensure a high-precision trajectory tracking control of APDL-SM under model uncertainty

and lumped external disturbance, a novel RNFTTSM control scheme has been proposed and

investigated in this paper. The proposed method mainly consists of the following three parts:

(i) the FTTSS to provide the initial-state-independent convergence and designable convergence

time in the sliding mode phase, (ii) the NFTTSM controller with the fixed time reaching law

to achieve the fixed-time stability and a settling time estimate for the reaching phase, and

(iii) the TDDO part to compensate the impact of model uncertainty and external disturbance

on tracking performance and improve the robustness of the tracking system. The stability of

the closed-loop control system is analyzed using Lyapunov method. Finally, the validity and

superiorities of our proposed FTTSS, NFTTSM, and RNFTTSM control scheme are verified

through simulation experiments.
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